Publications

  • Update and challenges in organo-mediated polymerization reactions

    Organocatalysis has become a very powerful tool for precision macromolecular chemistry, as judged by the number of articles published in this field in the past decade. A variety of small organic molecules, including Brønsted/Lewis bases and acids, based on amines, phosphines or carbenes, but also on bi-component systems, have been employed as a means to catalyze the polymerization of miscellaneous monomers. Not only can organocatalysts be employed to promote the ring-opening polymerization of various heterocyclics (e.g. lactones, lactide, cyclic carbonates, epoxides, lactams, cyclocarbosiloxanes), but some of them also allow activating vinylic monomers such as (meth)acrylics, or triggering the step-growth polymerization of monomers such as diisocyanates and diols for polyurethane synthesis. The reduced toxicity of organocatalysts in comparison to their metallic counterparts is also driving their development in some sensitive applications, such as biomedical or microelectronics. Overall, organocatalysts display specific monomer activation modes, thereby providing a unique opportunity to control the polymerization of various functional monomers, under mild conditions. This review article focuses on advances of the past 4 years (>150 publications) in polymerization reactions utilizing small organic molecules either as direct initiators or as true catalysts, with a special emphasis on monomer activation modes, as well as polymerization mechanism aspects.

  • Synthesis of Polyurethanes Using Organocatalysis: A Perspective

    Organocatalysis has become an invaluable tool for polymer synthesis, and its utility has been demonstrated in ring-opening, anionic, zwitterionic, and group-transfer polymerizations. Despite this, the use of organocatalysis in other polymerization reactions such as step-growth polymerizations remains underexplored, relative to more traditional metal-based polymerizations. Recently, the use of organic bases such as guanidines, amidines, N-heterocyclic carbenes, and organic “strong or super-strong” Brønsted acids to catalyze the synthesis of metal-free polyurethanes has shown to be competitive to commercially widely used dibutyltin dilaurate and dibutyltin diacetate catalysts. This Perspective article highlights recent advances in organocatalyst design for isocyanate-based polyurethane synthesis with the aim of comparing the activity and selectivity of each of the new catalytic reactions to each other and the traditional metal-based catalysts. The article also draws attention to new trends in isocyanate-free polyurethane synthesis and the key role that organocatalysis is playing in these innovative polymerization processes.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 642671